Measurements of Photon Beam Flattening Filter Using an Anisotropic Analytical Algorithm and Electron Beam Employing Electron Monte Carlo
نویسندگان
چکیده مقاله:
Introduction: This study aimed to report the measurement of photon and electron beams to configure the Analytical Anisotropic Algorithm and Electron Monte Carlo used in clinical treatment. Material and Methods: All measurements were performed in a large water phantom using a 3-dimensional scanning system (PTW, Germany). For photon beams, the data were measured with a 0.125cc cylindrical chamber. For electron, the data were performed with a Roos chamber. Results: In photon beams, flatness and symmetry for reference field size 10×10cm2 were within the tolerance intervals. Flatness were 0.79% and 1.55% for X6MV and X18MV, respectively. Symmetry were 0.57 and 0.25 for X6MV and X18MV, respectively. The output factor vary between 0.83 and 1.11 for X6MV. Moreover, it varies between 0.74 and 1.09 for X18MV. The leaf transmission factors were 0.97% for X6MV and1.14% for X18MV. The DLG were 1.31 and 1.34 for X6MV and X18MV, respectively. For electron beams, the quality index R50 for applicator 15×15cm2 were in the tolerance. Maximum depth dose for 6, 9, 12, 16 and 20MeV were 1.2, 1.9, 2.7, 2.99 and 2.4cm, respectively. Bremsstrahlung tail were 6MeV–2.86cm, 9MeV–4.32cm, 12MeV–5.96cm, 16MeV–7.93cm, and 20MeV–10.08cm per energy levels. Conclusion: The obtained results and international recommendations were in a good agrement
منابع مشابه
Monte Carlo estimation of electron contamination in a 18 MV clinical photon beam
Background: The electron contamination may reduce or even diminish the skin sparing property of the megavoltage beam. The detailed characteristics of contaminant electrons are presented for different field sizes and cases. Materials and Methods: The Monte Carlo code, MCNPX, has been used to simulate 18 MV photon beam from a Varian Linac-2300 accelerator. All dose measurements were car...
متن کاملSensitivity of megavoltage photon beam Monte Carlo simulations to electron beam and other parameters.
The BEAM code is used to simulate nine photon beams from three major manufacturers of medical linear accelerators (Varian, Elekta, and Siemens), to derive and evaluate estimates for the parameters of the electron beam incident on the target, and to study the effects of some mechanical parameters like target width, primary collimator opening, flattening filter material and density. The mean ener...
متن کاملMonte Carlo Simulation of a Linear Accelerator and Electron Beam Parameters Used in Radiotherapy
Introduction: In recent decades, several Monte Carlo codes have been introduced for research and medical applications. These methods provide both accurate and detailed calculation of particle transport from linear accelerators. The main drawback of Monte Carlo techniques is the extremely long computing time that is required in order to obtain a dose distribution with good statistical accuracy. ...
متن کاملmonte carlo estimation of electron contamination in a 18 mv clinical photon beam
background: the electron contamination may reduce or even diminish the skin sparing property of the megavoltage beam. the detailed characteristics of contaminant electrons are presented for different field sizes and cases. materials and methods: the monte carlo code, mcnpx, has been used to simulate 18 mv photon beam from a varian linac-2300 accelerator. all dose measurements were carried out u...
متن کاملBenchmarking of Monte Carlo model of 6 Mv photon beam produced by Siemens Oncor® linear accelerator: determination of initial electron beam parameters in comparison with measurement
Introduction: The aim of this study was to investigate the initial electron beam parameters for Monte Carlo model of 6MV photon beam produced by Siemens Oncor® linear accelerator. Materials and Methods: In this study, the EGSnrc Monte Carlo user codes BEAMnrc and DOSXYZnrc were used. The beamnrc code were used for modelling of a 6 MV photon beam produced by...
متن کاملComparison of Electron-Beam Dose Distributions in a Heterogeneous Phantom Obtained Using Radiochromic Film Dosimetry and Monte Carlo Simulation
Introduction: Nowadays new radiochromic films have an essential role in radiotherapy dosimetry. Properties such as high sensitivity, good reproducibility, high spatial resolution, easy readout and portability have made them attractive for dosimetry, especially in high-dose-gradient regions. Material and Methods: In this study, electron-beam dose distributions in homogenous and heterogeneous pha...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 16 شماره 3
صفحات 200- 209
تاریخ انتشار 2019-05-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023